Extracting Motion Primitives from Natural Handwriting Data
نویسندگان
چکیده
For the past 10 years it has become clear that biological movement is made up of sub-routine type blocks, or motor primitives, with a central controller timing the activation of these blocks, creating synergies of muscle activation. This paper shows that it is possible to use a factorial hidden Markov model to infer primitives in handwriting data. These primitives are not predefined in terms of location of occurrence within the handwriting, and they are not limited or defined by a particular character set. Also, the variation in the data can to a large extent be explained by timing variation in the triggering of the primitives. Once an appropriate set of primitives has been inferred, the characters can be represented as a set of timings of primitive activations, along with variances, giving a very compact representation of the character. Separating the motor system into a motor primitive part, and a timing control gives us a possible insight into how we might create scribbles on paper.
منابع مشابه
First Year PhD Report Extracting Motion Primitives from Natural Handwriting Data
Movement selection and control is a very difficult inverse dynamics problem for robotic control that humans and animals accomplish easily. For the past 10 years there has been a popular theory that biological movement is made up of sub-routine type blocks, or ‘motor primitives’, with a central controller timing the activation of these blocks, creating synergies of muscle activation. Using machi...
متن کاملSecond Year PhD Report Extracting Motion Primitives from Natural Handwriting Data
Biological movement control and planning is based upon motor primitives. Each motor primitive takes responsibility for controlling a small sub-block of motion, containing coherent muscle activation outputs. A central timing controller cues these subroutines of movement, creating complete movement strategies that are built up by overlaying primitives, thus creating synergies of muscle activation...
متن کاملModelling motion primitives and their timing in biologically executed movements
Biological movement is built up of sub-blocks or motion primitives. Such primitives provide a compact representation of movement which is also desirable in robotic control applications. We analyse handwriting data to gain a better understanding of primitives and their timings in biological movements. Inference of the shape and the timing of primitives can be done using a factorial HMM based mod...
متن کاملA Primitive Based Generative Model to Infer Timing Information in Unpartitioned Handwriting Data
Biological movement control and planning is based upon motor primitives. In our approach, we presume that each motor primitive takes responsibility for controlling a small sub-block of motion, containing coherent muscle activation outputs. A central timing controller cues these subroutines of movement, creating complete movement strategies that are built up by overlaying primitives, thus creati...
متن کاملOptimal Movement Primitives
The theory of Optimal Unsupervised Motor Learning shows how a network can discover a reduced-order controller for an unknown nonlinear system by representing only the most significant modes. Here, I extend the theory to apply to command sequences, so that the most significant components discovered by the network correspond to motion "primitives". Combinations of these primitives can be used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006